

Nonalcoholic steatohepatitis: what's new?

JOHN HART, M.D. SURGICAL PATHOLOGY & HEPATOLOGY UNIVERSITY OF CHICAGO MEDICAL CENTER

A COLLECTION

OF

THE PUBLISHED WRITINGS

OF THE LATE

THOMAS ADDISON, M.D.,

THE NEW SYDENHAM SOCIETY, LONDON.

MDCCCLXVIII.

OBSERVATIONS

ON

FATTY DEGENERATION OF THE LIVER.

With respect to the causes of this fatty degeneration of the liver, very little, or alsolutely nothing is known. In most of the cases which I have met with, there has been either positive or strong presumptive evidence that the individuals had indulged in spirit-drinking, and indeed the most exquisite case I ever saw in a young subject, occurred in a female who had for some time subsisted almost exclusively on ardent spirits. On the other hand the extreme frequency of the degeneration in France, where the people are but little given to such indulgences, throws considerable doubt upon such an origin of the complaint, whilst its great frequency there in conjunction with phthisis, would almost lead to a belief that it has some connection with a scrofulous tendency, a belief which, I confess, I am strongly disposed to entertain.

THE LIVER IN OBESITY A. M. A. ARCHIVES OF INTERNAL MEDICINE SAMUEL ZELMAN, M.D. TOPEKA, KAN.

Summary of Argument.—Experimental obesity in animals is uniformly accompanied with hepatic damage. Previous evidence of hepatic damage in human obesity is limited to disturbances of carbohydrate tolerance. The present study indicates the uniform presence of liver damage in human obesity, as manifested by liver-function tests and biopsies. Confirmation is found in the greatly increased incidence of cirrhosis of the liver in the obese, as indicated by insurance statistics. An explanation of the liver damage of obesity is found in (a) the high caloric requirement of the obese, constituting a functional overload upon the liver, (b) the high-carbohydrate, high-fat, low-protein diet customary among the obese, and (c) the increased requirement of choline and vitamins of the B complex imposed by the quantitative and qualitative nature of the obese diet. The reducing program should consist of a high-protein diet supplemented by choline and vitamins of the B complex.

A. M. A. ARCHIVES OF INTERNAL MEDICINE

Case No.	Liver Cell Degen- eration	Focal Necrosis	Bile Pigment Retention	Fat Vacuo- lation	Liver Cell Regen- eration	Kupffer Cell Mobili- zation	Periportal Cellular Infiltrate	Periportal Fibrosis	Total Abn ormal†
1	2	0	0	2	1	1	2	2	4
2	1	1	2	1	1	0	1	1	1
3	2	1	0	3	2	0	1	1	3
4	1	0	2	0	1	0	1	1	1
5	2	1	2	1	2	1	1	2	4
6	3	1	2	2	2	1	1	1	4
7	2	1	1	2	2	1	3	2	5
8	1	0	1	1	2	1	1	2	2
9	1	0	1	0	2	1	1	0	1
10	2	1	1	3	2	1	1	1	3
11	2	1	0	1	2	2	3	2	5
12	2	1	1	2	2	1	1	1	3
13	2	1	2	1	1	1	2	2	4
14	2	2	1	2	1	2	2	3	6
15	1	0	1	1	1	1	1	I	0
16				••		••			
17	1	1	2	1	1	1	1	3	2
18	1	1	2	2	1	1	2	1	3
19	1	1	2	2	2	1	1	2	4
20	2	1	2	2	1	1	1	1	3
Total Ab- normal †	11	1	9	10	10	2	6	9	3.1 (Average
% Ab- normal	5 8	5	47	53	53	11	32	47	per Case)

TABLE 4.—Histologic Changes in Liver in Obesity*

REVIEW: Nonalcoholic steatohepatitis

Journal of Gastroenterology and Hepatology (1997) 12, 398-403

JURGEN LUDWIG,* DOUGLAS B McGILL[†] AND KEITH D LINDOR[†]

HISTORY OF THE DISEASE

Fat people have fat livers. This has been known for about 40 years; even the appearance of inflammation and fibrosis in some of these fatty livers was described that long ago.¹ However, the finding was largely ignored well into the 1960s. At that time, the condition that we now call nonalcoholic steatohepatitis (NASH) emerged from the spectrum of alcoholic liver diseases. The recognition of this apparently new disease resulted from the then popular intestinal bypass surgery for morbid obesity.²⁻⁹ In many patients who had been treated in this manner, a severe steatohepatitic liver disease appeared as an unexpected and certainly undesired complication. The resemblance between the biopsy features observed in these patients and the well-known findings in alcoholic liver disease was soon noted.¹⁰ The

Triglyceride accumulation leads to steatosis

Genetic risk factors for hepatic steatosis

Fatty Liver

What Causes Steatohepatitis?

<u>Non-Alcoholic</u> <u>Fatty Liver Disease (NAFLD)</u>

Most common chronic liver disease in the United States

Why Diagnose NASH?

- Potential interventions:
 - Lifestyle modification
 - Several ongoing medication trials
 - Bariatric surgery
- Prognosis:
 - NASH is progressive
 - Cirrhosis and its complications in some patients

Fatty Liver Treatment Focus Points

Promrat et al., Hepatology 2010.

Increasing prevalence of nonalcoholic steatohepatitis as an indication for liver transplantation (Surgery 2014;156:1049-56.)

R. Cutler Quillin, III, MD, Gregory C. Wilson, MD, Jeffrey M. Sutton, MD, Dennis J. Hanseman,

The Natural History of Nonalcoholic Fatty Liver Disease: A Population-Based Cohort Study

GASTROENTEROLOGY 2005;129:113–121

LEON A. ADAMS,* JAMES F. LYMP,[†] JENNY ST. SAUVER,[§] SCHUYLER O. SANDERSON,^{||} KEITH D. LINDOR,* ARIEL FELDSTEIN,* and PAUL ANGULO*

*Division of Gastroenterology and Hepatology, [†]Division of Biostatistics, [§]Division of Epidemiology, and ^{II}Division of Anatomic Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota

Figure 1. Methods of diagnosis of patients with NAFLD in Olmsted County (1980–2000).

mean follow-up was 7.6 ± 4.0 years

Etiology	N (%) (N = 53)
Malignancy	15 (28%)
Bowel	5 (9%)
Pancreas	3 (8%)
Breast	2 (4%)
Other	5 (9%)
Ischemic heart disease	13 (25%)
Liver disease	7 (13%)
Liver failure	4 (7%)
Variceal hemorrhage	2 (4%)
Hepatocellular carcinoma	1 (2%)
Infection	6 (11%)
Pneumonia	5 (9%)
Sepsis	1 (2%)
Obstructive lung disease	2 (4%)
Congestive cardiac failure	2 (4%)
Cerebrovascular accident	1 (2%)
Gastrointestinal bleed	1 (2%)
Pulmonary embolus	1 (2%)
Aortic aneurysm dissection	1 (2%)
Smoke inhalation	1 (2%)
Retroperitoneal hemorrhage	1 (2%)
Unknown	2 (4%)

Table 2. Cause of Death

Table 3. Baseline Predictors of Mortality by MultivariateProportional Hazard Modeling

Variable	Parameter estimate	Standard error	Hazard ratio (95% CI)	P value
Age (per decade)	0.08	0.01	2.2 (1.7-2.7)	<.0001
IFG/diabetes	0.97	0.34	2.6 (1.3-5.2)	.005
Cirrhosis at baseline	1.13	0.48	3.1 (1.2–7.8)	.02
Smoking	0.35	0.29	1.4 (0.8–2.5)	.2
Hypertension	-0.32	0.29	0.7 (0.4–1.3)	.3
Ischemic heart disease	0.08	0.37	1.1 (0.5–2.3)	.8

NAFLD patients	N = 132	Cirrhosis (X = 8.3 yrs f/u)
Steatosis	49 (37%)	2 (4%)
Steatosis + lobular inflammation	10 (8%)	0 (0%)
Steatosis + hepatocyte ballooning	19 (14%)	4 (21%)
Steatosis + ballooning + Mallory-Denk or fibrosis	54 (41%)	14 (26%)

Matteoni et al., Gastroenterology 1999.

Meta-analysis: Natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity

Annals of Medicine, 2011; 43: 617-649

GIOVANNI MUSSO¹, ROBERTO GAMBINO², MAURIZIO CASSADER² & GIANFRANCO PAGANO²

liver-related mortality

		Odds Ratio		Odds	s Ratio	
Study or Subgroup	Weight	M-H, Fixed, 95% Cl		M-H, Fix	ed, 95% Cl	
Adams 2005	13.3%	3.71 [0.20, 70.19]				
Ekstedt 2006	10.2%	4.21 [0.20, 89.42]			-	_
Matteoni 1999	20.4%	5.91 [0.71, 48.83]		121		7
Rafiq 2009	27.5%	7.66 [1.61, 36.52]				
Soderberg 2009	28.6%	5.17 [1.03, 26.06]			-	
Total (95% CI)	100.0%	5.71 [2.31, 14.13]			•	
Total events						
Heterogeneity: Chi ² =	0.27, df = 4	l (P = 0.99); l ² = 0%				
Test for overall effect: Z = 3.77 (P = 0.0002)			0.01	steatosis	NASH	100

AASLD PRACTICE GUIDELINE

The Diagnosis and Management of Non-Alcoholic Fatty Liver Disease: Practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association

Naga Chalasani, MD, FACG,¹ Zobair Younossi, MD, FACG,² Joel E. Lavine, MD, PhD,³ Anna Mae Diehl, MD,⁴ Elizabeth M. Brunt, MD,⁵ Kenneth Cusi, MD,⁶ Michael Charlton, MD,⁷ and Arun J. Sanyal, MD⁸

Conditions with established association	Conditions with emerging association*
Obesity	Polycystic ovary syndrome
Type 2 diabetes mellitus	Hypothyroidism
Dyslipidemia	Obstructive Sleep apnea
Metabolic syndrome**	Hypopituitarism
	Hypogonadism
	Pancreato-duodenal resection

Table 4. Risk Factors Associated with NAFLD

Correlation of Paired Liver Biopsies in Morbidly Obese Patients With Suspected Nonalcoholic Fatty Liver Disease

Raphael B. Merriman,¹ Linda D. Ferrell,² Marco G. Patti,³ Shiobhan R. Weston,¹ Mark S. Pabst,¹ Bradley E. Aouizerat,⁴ and Nathan M. Bass¹

- 41 patients undergoing bariatric surgery
- BMI median = 50 (34.5 to 69.8)
- Intra-operative liver biopsy:
 - 43.8% Normal
 - 29.3% Steatosis
 - 26.9% NASH

Influence of ethnicity on histological differences in non-alcoholic fatty liver disease $\stackrel{\leftrightarrow}{\Rightarrow}$

Journal of Hepatology 50 (2009) 797-804

Smruti R. Mohanty^{1,*}, Tara N. Troy¹, Dezheng Huo², Bridget L. O'Brien³, Donald M. Jensen¹, John Hart⁴

Influence of ethnicity on histological differences in non-alcoholic fatty liver disease $\stackrel{\leftrightarrow}{\approx}$

Journal of Hepatology 50 (2009) 797-804

Smruti R. Mohanty^{1,*}, Tara N. Troy¹, Dezheng Huo², Bridget L. O'Brien³, Donald M. Jensen¹, John Hart⁴

	White $(n = 154)$	African American $(n = 36)$	Hispanic $(n = 32)$	Asian $(n = 16)$
Steatosis				
1	57 (37.0)	20 (55.6)	14 (43.8)	6 (37.5)
2	39 (25.3)	9 (25.0)	7 (21.9)	7 (43.8)
3	58 (37.7)	7 (19.4)	11 (34.4)	3 (18.8)
OR (95% CI)	1.0 (ref.)	0.44 (0.22-0.89)	0.80 (0.39-1.61)	0.69 (0.28-1.69)
Pair-wise p value		0.02	0.54	0.42
Inflammation				
0	99 (64.3)	27 (75.0)	17 (53.1)	6 (37.5)
1	42 (27.3)	7 (19.4)	13 (40.6)	9 (56.3)
2	13 (8.4)	2 (5.6)	2 (6.3)	1 (6.3)
OR (95% CI)	1.0 (ref.)	0.60 (0.26-1.35)	1.44 (0.69-3.02)	2.31 (0.90-5.93)
Pair-wise p value		0.22	0.33	0.08
Fibrosis				
0	88 (57.1)	25 (69.4)	19 (59.4)	5 (31.3)
1	34 (22.1)	7 (19.4)	4 (12.5)	10 (62.5)
2	14 (9.1)	3 (8.3)	3 (9.4)	1 (6.3)
3	9 (5.8)	0	3 (9.4)	0
4	9 (5.8)	1 (2.8)	3 (9.4)	0
OR (95% CI)	1.0 (ref.)	0.56 (0.26-1.19)	1.09 (0.51-2.33)	1.46 (0.62-3.44)
Pair-wise p value		0.13	0.83	0.39
Ballooning				
0	55 (35.7)	16 (44.4)	11 (34.4)	2 (12.5)
1	74 (48.1)	15 (41.7)	13 (40.6)	9 (56.3)
2	25 (16.2)	5 (13.9)	8 (25.0)	5 (31.3)
OR (95% CI)	1.0 (ref.)	0.73 (0.36-1.45)	1.29 (0.62-2.68)	2.67 (1.03-6.93)
Pair-wise p value		0.37	0.50	0.04
Mallory bodies				
No (0)	123 (79.9)	30 (83.3)	20 (62.5)	12 (75.0)
Yes (1)	31 (20.1)	6 (16.7)	12 (37.5)	4 (25.0)
OR (95% CI)	1.0 (ref.)	0.79 (0.30-2.07)	2.38 (1.05-5.39)	1.32 (0.40-4.38)
Pair-wise p value		0.64	0.04	0.65

Pathologic findings of NAFLD patients: ordinal and binary logistic regressions.

Genetic variation in *PNPLA3* confers susceptibility to nonalcoholic fatty liver disease

Nat Genet. 2008 December ; 40(12): 1461–1465.

Stefano Romeo^{1,*}, Julia Kozlitina^{2,3,*}, Chao Xing^{1,2}, Alexander Pertsemlidis¹, David Cox⁴, Len A. Pennacchio⁵, Eric Boerwinkle⁶, Jonathan C. Cohen¹, and Helen H. Hobbs^{1,7}

- 53 KD protein (adiponutrin) lipid acyl hydrolase
- Expressed primarily in hepatocytes
- Associated with NASH and ASH
- Associated with fibrosis in ASH and NASH
- Associated with fibrosis in chronic HCV hepatitis
- Associated with HCC

Genetic variation in *PNPLA3* confers susceptibility to nonalcoholic fatty liver disease

Nat Genet. 2008 December ; 40(12): 1461–1465.

Stefano Romeo^{1,*}, Julia Kozlitina^{2,3,*}, Chao Xing^{1,2}, Alexander Pertsemlidis¹, David Cox⁴, Len A. Pennacchio⁵, Eric Boerwinkle⁶, Jonathan C. Cohen¹, and Helen H. Hobbs^{1,7}

Characterization of European Ancestry Nonalcoholic Fatty Liver Disease-Associated Variants in Individuals of African and Hispanic Descent

(HEPATOLOGY 2013;58:966-975)

Nicholette D. Palmer,^{1*} Solomon K. Musani,^{2*} Laura M. Yerges-Armstrong,^{3*} Mary F. Feitosa,^{4*}

European Ancestry
African American

Hispanic American Pooled

Pnpla3I148M Knockin Mice Accumulate PNPLA3 on Lipid Droplets and Develop Hepatic Steatosis (HEPATOLOGY 2014;00:000-000)

Eriks Smagris,¹ Soumik BasuRay,¹ John Li,¹ Yongcheng Huang,¹ Ka-man V. Lai,² Jesper Gromada,² Jonathan C. Cohen,¹ and Helen H. Hobbs^{1,3}

A Catalytically nonfunctional protein

Chow Diet

Non-invasive Methods for Assessing NAFLD

Diagnosis of NASH:

- 1. Circulating levels of CK18
- 2. Presence of metabolic syndrome

Presence of advanced fibrosis:

- 1. NAFLD Fibrosis Score
- 2. Enhanced Liver Fibrosis Panel
- 3. Transient elastography

When to obtain a liver biopsy in patients with NAFLD?

Liver biopsy remains the gold standard for characterizing liver histology in patients with NAFLD. However, it is expensive and carries some morbidity and very rare mortality risk. Thus, it should be performed in those who would benefit the most from diagnostic, therapeutic guidance, and prognostic perspectives.

Recommendations

13. Liver biopsy should be considered in patients with NAFLD who are at increased risk to have steatohepatitis and advanced fibrosis. (Strength -1, Evidence -B)

14. The presence of metabolic syndrome and the NAFLD Fibrosis Score may be used for identifying patients who are at risk for steatohepatitis and advanced fibrosis. (Strength -1, Evidence -B)

15. Liver biopsy should be considered in patients with suspected NAFLD in whom competing etiologies for hepatic steatosis and co-existing chronic liver diseases cannot be excluded without a liver biopsy. (Strength -1, Evidence -B)

Predictive value of ALT levels for non-alcoholic steatohepatitis (NASH) and advanced fibrosis in non-alcoholic fatty liver disease (NAFLD)

Siddharth Verma¹, Donald Jensen², John Hart³ and Smruti R. Mohanty¹ Liver Int. 2013: 33: 1398–1405

Histological finding	All patients ($n = 238$)	Normal ALT ($n = 56$)	Elevated ALT ($n = 166$)	<i>P</i> value
NAS score (mean)	3.2 ± 1.7	2.4 ± 1.5	3.4 ± 1.7	<0.01
<5	181 (76)	50 (89.3)	118 (71.1)	
≥5	57 (24)	6 (10.7)	48 (28.9)	
Steatosis ≥2	141 (59.2)	21 (38)	108 (65.1)	<0.01
Ballooning ≥1	43 (18.1)	47 (83.9)	134 (80.7)	0.6
Inflammation ≥ 2	18 (7.6)	1 (1.8)	17 (10.3)	0.04
Fibrosis score (mean)	0.8 ± 1.1	1.1 ± 1.4	0.7 ± 1.0	0.19
<2	192 (80.7)	41 (73.2)	136 (81.9)	
≥2	46 (19.3)	15 (26.8)	30 (18.1)	

Table 2. Histological characteristics of all patients and patients with normal and elevated alanine aminotransferase (ALT) levels*

Predictive value of ALT levels for non-alcoholic steatohepatitis (NASH) and advanced fibrosis in non-alcoholic fatty liver disease (NAFLD)

Siddharth Verma¹, Donald Jensen², John Hart³ and Smruti R. Mohanty¹ Liver Int. 2013: 33: 1398–1405

Table 3. Sensitivity and Specificity of alanine aminotransferase (ALT) for predicting non-alcoholic steatohepatitis (NASH) and advanced fibrosis

	ALT value				
	<35	36–52	53–70	>70	
NASH					
Sensitivity (%)	88.9	88.9–72.2	72.2–50	50	
Specificity (%)	28.6	28.6–50.6	50.6-60.7	60.7	
Advanced fibrosis					
Sensitivity (%)	68.9	68.9–48.9	48.8–40	40	
Specificity (%)	22.6	22.6–43.5	43.5–57.6	57.6	

Histologic Features of NASH (and ASH)

- Steatosis predominantly macrovesicular
- Inflammation neutrophilic and lymphocytic
- Hepatocyte injury +/- Mallory-Denk bodies
- + / fibrosis centrilobular and/or portal/periportal

Brunt EM, Clin Liv Dis 2009

Histologic Features of Steatohepatitis Steatosis

- Extent > 5% (by definition)
- Macrovesicular >> microvesicular:
 - Pure microvesicular steatosis is not a feature in NAFLD
 - Focal microvesicular steatosis is not clinically significant
- Zonal distribution:
 - Often zone 3 predominant in adults
 - Panacinar or a zonal distribution can be seen
 - Can be zone 1 predominant in children

Macrovesicular Steatosis

Focal microvesicular steatosis

zone 3 (centrilobular) steatosis

panacinar steatosis

zone 1 (periportal) steatosis in pediatric NAFLD

azonal steatosis

Histologic Features of Steatohepatitis Inflammation

- Lobular inflammation:
 - Clusters of neutrophils, esp. surrounding Mallory-Denk bodies
 - Clusters of lymphocytes
 - Clusters of macrophages / Kupffer cells (microgranulomas)
- Portal inflammation:
 - Mostly seen in pediatric NAFLD, resolving NASH, and in severe disease
 - Dense inflammation suggests superimposed AIH / chronic viral hepatitis
 - Autoantibodies (ANA, SMA) present in 40% of patients with NAFLD

lobular inflammation

0

-

lobular inflammation

portal inflammation

Histologic Features of Steatohepatitis Hepatocyte injury

- Hepatocyte ballooning degeneration:
 - Most difficult and subjective feature of steatohepatitis
 - Enlarged hepatocytes with wispy or clumped cytoplasm and a centrally placed nucleus
 - Most prominent in zone 3 in areas of perisinusoidal fibrosis
 - Can contain Mallory-Denk bodies
 - Loss of cytokeratin 8/18 IHC can aid identification
 - Not common in pediatric NAFLD
- Acidophil bodies

Acidophil Bodies

hepatocyte ballooning degeneration

hepatocyte ballooning degeneration

hepatocyte ballooning degeneration

Histologic Features of Steaohepatitis Often present, but not required

- Mallory-Denk bodies
- Glycogenated hepatocyte nuclei
- Lobular lipogranulomas

Mallory-Denk Bodies

- Located in zone 3
- Denatured cytokeratin filaments
- Associated with ubiquitin
- Occur in ballooned hepatocytes
- CK7, CK18, CK19 +
- Sometimes cuffed by neutrophils
- Also seen in zone 3 in ASH and amiodarone toxicity

Mallory Body

Fig. 1. **Top:** "The Chief" at his microscope, from an Illustration on the cover of the October 2001 Issue of the American Journal of Pathology celebrating its centennial (maybe³) taken from a photograph in the 1933 Journal supplement⁴ that was dedicated to FBM, in honor of his 70th birthday and the opening of the Mallory Institute of Pathology of Boston City Hospital. **Bottom:** Hyaline droplets appearing in the cytoplasm of liver cells and fusing together, from the liver biopsy of a patient with alcoholic cirrhosis. Reproduced with permission from an Illustration by Miss Etta R. Plotti in FB Mallory's 1914 textbook *Principles of Pathologic Histology*.¹⁰

Mallory-Denk Body Ringed by Neutrophils

Mallory-Denk body

Mallory-Denk Bodies - Ubiquitin Immunostain

Histologic Features Unusual for Steatohepatitis Consider other liver diseases

- Pure or predominant microvesicular steatosis
- Portal > lobular inflammation*
- Portal > centrilobular fibrosis*
- Prominent hepatocyte ballooning with minimal steatosis (consider amiodarone toxicity)
- Epithelioid granulomas
- Conspicuous plasma cells
- Chronic cholestatic features

* Except pediatric NASH

ox

DISEASES OF THE LIVER.

BY

GEORGE BUDD, M. D., F.R.S., PROFESSOR OF MEDICINE IN KING'S COLLEGE, LONDON; LATE FELLOW

OF CAIUS COLLEGE, CANBRIDGE.

Bith Colored Plates and Bood-cuts.

THIRD AMERICAN,

FROM THE THIRD AND REVISED LONDON EDITION.

PHILADELPHIA: BLANCHARD AND LEA. 1857.

A liver still more remarkable for the large amount of fat it contained fell under my observation in King's College Hospital, in the spring of 1850. It was taken from a drunkard, and was in a state of cirrhosis, as well as of fatty degeneration, and in consequence presented a very remarkable "hob-nailed" appearance, from the nodules of cirrhosis being enlarged by the accumulation of oil. A portion of it blazed when thrown into the fire, and a particle from the lobular substance had under the microscope almost the appearance of ordinary fatty tissue, from the number and size of the oil-globules it contained. Dr. L. S. Beale made an analysis of a portion of it for me, and found that 65 parts in 100-about six-sevenths of all the solid matter in the liver—consisted of fat.

Grading of NASH* EM Brunt. Sem Liver Dis 2001; 21:3-16.

GRADE	Steatosis	Hepatocyte Ballooning	Lobular Inflammation	Portal Inflammation
MILD	Up to 66%; mostly macrovesic.	Zone 3; occasional cells	Scattered polys and mononuclear cells	None or mild
MOD	Up to 66%; usually mixed	Zone 3; obvious	Polys with ballooned cells & areas of pericellular fibrosis	Mild to Moderate
SEVERE	> 66%; usually mixed	Predom. Zone 3; marked	Polys with ballooned cells & areas of pericellular fibrosis	Mild to Moderate

*modified version

American Journal of Gastroenterology (1999) 94, 2467–2474;

Design and Validation of a Histological Scoring System for Nonalcoholic Fatty Liver Disease (HEPATOLOGY 2005;41:1313-1321.)

David E. Kleiner,¹ Elizabeth M. Brunt,² Mark Van Natta,³ Cynthia Behling,⁴ Melissa J. Contos,⁵ Oscar W. Cummings,⁶ Linda D. Ferrell,⁷ Yao-Chang Liu,⁸ Michael S. Torbenson,⁹ Aynur Unalp-Arida,³ Matthew Yeh,¹⁰ Arthur J. McCullough,¹¹ and Arun J. Sanyal¹² for the Nonalcoholic Steatohepatitis Clinical Research Network¹³

- Nine study pathologists (NIDDK consortium)
- 32 adult and 18 pediatric biopsies
- 14 histologic features scored:
 - Degree of macrovesicular steatosis (0-3)
 - Degree of lobular inflammation (0-3)
 - Degree of hepatocyte ballooning (0-2)
 - Degree of fibrosis (0-4)
- NAFLD Activity Score (NAS):
 - − Score \ge 5 correlated with diagnosis of NASH
 - Score < 3 correlated with diagnosis of not NASH

in fatty liver disease.^{22,23} Each of the major features (steatosis grade, lobular inflammation, ballooning, and fibrosis) showed independent correlation with a diagnosis of steatohepatitis. Based on this observation and the reproducibility studies, we defined a NAS for evaluating histological changes after therapeutic intervention trials. It is important to note that the primary purpose of the NAS is to assess overall histological change; it is not intended that numeric values replace the pathologist's diagnostic determination of steatohepatitis. The NAS has also not been studied as a measure of the rapidity of disease progression, nor should it be taken as an absolute severity scale.

	Agreement (Kappa Score)			
	Intra-rater	Interrater		
ltem	Adult Cases (32 cases, 9 raters)	Adult Cases (32 cases, 9 raters)	Pediatric Cases (18 cases, 9 raters)	
 Steatosis, grade 	0.83	0.79	0.64	
Steatosis, location	0.39	0.31	0.39	
Microvesicular steatosis	0.37	0.34	0.02	
Fibrosis	0.85	0.84	0.62	
Lobular inflammation	0.60	0.45	0.28	
Microgranulomas	0.40	0.18	0.15	
Lipogranulomas	0.38	0.26	0.00	
Portal inflammation	0.55	0.45	0.42	
Ballooning	0.66	0.56	0.22	
Acidophil bodies	0.28	0.19	0.27	
Pigmented macrophages	0.38	0.15	0.06	
Megamitochondria	0.28	0.16	-0.03	
Mallory's hyaline	0.64	0.58	0.69	
Glycogenated nuclei	0.66	0.58	0.32	
Diagnostic classification	0.66	0.61	0.32	

Table 2. Inter- and Intra-rater Variability

Utility and Appropriateness of the Fatty Liver Inhibition of Progression (FLIP) Algorithm and Steatosis, Activity, and Fibrosis (SAF) Score in the Evaluation of Biopsies of Nonalcoholic Fatty Liver Disease

Pierre Bedossa and the FLIP Pathology Consortium*

(HEPATOLOGY 2014;60:565-575)

Table 2. Agreement for Diagnosis Before and After Use ofAlgorithm in the Two Groups of Pathologists

		к Score	Biopsy With Full Agreement Between Pathologists (%)	Biopsy With Agreement With Reference Diagnosis (%)
Group 1	Baseline classification	0.54	26/40 (65%)	31/40 (77%)
	Algorithmic classification	0.66	34/40 (85%)	39/40 (97%)
Group 2	Baseline classification	0.35	18/40 (45%)	17/40 (42%)
	Algorithmic classification	0.61	28/40 (70%)	30/40 (75%)

Why Grade and Stage NASH?

- Staging provides information about current degree of chronic damage (i.e., fibrosis) in the liver
- Grading is supposed to:
 - Correlate with liver chemistry test elevations????
 - Predict future risk of fibrosis

Necroinflammatory Activity Leads to Fibrosis

American Journal of Physiology - Gastrointestinal and Liver Physiology May 2011Vol.

Staging of NASH EM Brunt. Sem Liver Dis 2001; 21:3-16.

Can NASH grade predict progression of fibrosis?

Long-Term Follow-up of Patients With NAFLD and Elevated Liver Enzymes Hepatology 2006; 44(4):865-73.

Mattias Ekstedt,¹ Lennart E. Franzén,² Ulrik L. Mathiesen,³ Lars Thorelius,⁴ Marika Holmqvist,⁵ Göran Bodemar,¹ and Stergios Kechagias⁶

- 129 patients
- 71 NASH, 46 steatosis, 12 steatosis with unspecific inflammation
- mean follow-up (SD) was 13.7 (1.3) years
- 41% NASH patients demonstrated progression of fibrosis

	Progressive Fibrosis Nonprogressive Fibrosis			
Necroinflammation	(n = 29)	(n = 41)	Р	
Lobular inflammation	4 (14%)	1 (3%)	N	
Portal inflammation	9 (31%)	7 (17%)	NS	
Periportal inflammation	4 (14%)	3 (7%)	N	
Hepatocellular ballooning	3 (10%)	2 (5%)	N	
Mallory's hyaline	1 (3%)	1 (2%)	N	

Histology at Baseline Versus Progression in Fibrosis Stage

Mechanisms of Hepatic Regeneration

Progressive Fibrosis in Nonalcoholic Steatohepatitis: Association With Altered Regeneration and a Ductular Reaction

MICHELLE M. RICHARDSON,* JULIE R. JONSSON,* ELIZABETH E. POWELL,* ELIZABETH M. BRUNT,[‡] BRENT A. NEUSCHWANDER-TETRI,[‡] PRITHI S. BHATHAL,[§] JOHN B. DIXON,^{||} MARTIN D. WELTMAN,[¶] HERBERT TILG,[#] ALEXANDER R. MOSCHEN,[#] DAVID M. PURDIE,** ANTHONY J. DEMETRIS,^{‡‡} and ANDREW D. CLOUSTON*

Aberrant expression of cytokeratin 7 in perivenular hepatocytes correlates with a cholestatic chemistry profile in patients with heart failure

Rish K Pai and John A Hart¹

MODERN PATHOLOGY (2010) 23, 1650-1656

Aberrant Centrizonal Features in Chronic Hepatic Venous Outflow Obstruction

Centrilobular Mimicry of Portal-based Disease

(Am J Surg Pathol 2014;38:205-214)

Gregor Krings, MD, PhD,* Bilge Can, MD,† and Linda Ferrell, MD*

TABLE 6. Comparison of Fibrosis Stage With Prevalence ofDuctular Metaplasia in Chronic Venous Outflow Obstruction ¹					
Fibrosis Stage	Grade 0	Grade 1	Grade 2	Grade 3	Total (n [%])
0/1a	4	0	0	0	0/4 (0)
1b	7	10	1	0	11/18 (61.1)
2	4	9	2	0	11/15 (73.3)
3	2	9	3	6	18/20 (90.0)
4	0	1	1	2	4/4 (100)
Total	17	29	7	8	44/61 (72.1)

Semiquantitative scoring of ductular metaplasia: 0, none; 1, mild; 2, moderate; and 3, marked.

hepatic venous outflow obstruction due to severe chronic heart failure

СК7

Centrizonal Arteries and Microvessels in Non-Alcoholic

Steatohepatitis Am J Surg Pathol. 2011 September ; 35(9): 1400–1404.

Ryan M. Gill, MD, PhD^{*}, Patricia Belt[†], Laura Wilson[†], Nathan M. Bass, MD, PhD[‡], and Linda D. Ferrell, MD^{*}

Does centrilobular ductular reaction correlate with fibrosis in NASH?

Lei Zhao, M.D, PhD Univ of Chicago

Maria Westerhoff, M.D Univ of Washington

Study Design

Number of patients		52
Age (yrs)		33-78, median 54
Sex (M/F)		1:1.36
NASH stage*		
	0	7 (13.5%)
	1	6 (11.5%)
	2	22 (42.3%)
	3	17 (32.7%)
NASH grade*		
	1	17 (32.7%)
	2	30 (57.7%)
	3	5 (10.0%)

* modified Brunt system

GS and CK7 immunostains on consecutive sections of each biopsy

Cytokeratin 7

Case 45 S07-23911 (grade 2 / stage 2)

- The presence of CK7+ cells within each GS+ centrilobular zone (CLZ) of every biopsy was recorded as either: no CK7+ cells, isolated single CK7+ cells, CK7+ cells in strings, or CK7+ ductular structures.
- In addition every portal tract (PT) in the CK7 stained slides was graded as either: no ductular reaction, mild ductular reaction, or florid ductular reaction.

Centrilobular DR is common in NASH

a total of 1250 GS positive centrilobular zones were scored

Centrilobular DR increases as grade increases

Factors associated with centrilobular DR

		Centrilobular Ductular Structures (single cells, strings & complete ductules)			
		Rs	p value		
→	Ballooning score	0.54	0.007		
→	Presence of	0.44	0.04		
	Mallory-Denk bodies				
→	Lobular	0.5	0.016		
	inflammation score				
	Extent of Steatosis	-0.14	0.5		
	Location of Steatosis	0.03	0.22		
	Portal inflammation	-0.14	0.72		

Centrilobular DR increases as fibrosis increases

* P<0.05

Portal DR is common in NASH

Total portal area scored = 897

mild portal DR = 511(57%)

florid portal DR = 188 (21%)

Portal DR and degree of necroinflammatory activity

Portal DR and fibrosis

* P<0.05

Correlation with fibrosis centrilobular DR vs. portal DR

Multivariate analysis: Rs: 0.56 p Values: Centrilobular DR 0.03 Portal DR NS

Conclusions

- CL CK7+ ductular elements may cause confusion in distinguishing portal tracts from CL zones, and GS immunostains may be helpful in this regard
- CK7+ CL ductular elements are common in NASH
- The development of CK7+ CL ductular elements correlates with increasing necroinflammatory activity and fibrosis.
- It is possible that the development of CK7+ CL ductular elements contributes to the development of fibrosis in NASH.

Histopathologic Features Related to Progression of Fibrosis in Sequential Liver Biopsies in Non-Alcoholic Steatohepatitis

- 51 NASH patients who underwent 2 liver biopsies at least 1 year apart were studied.
- Hepatocyte ballooning, Mallory-Denk bodies, lobular & portal inflammation, lobular neutrophils, steatosis & fibrosis stage were scored in initial biopsies.
- Centrilobular CK7+ elements were quantitated by form and degree in initial biopsies (CK7 & GS immunostains).
- Portal ductular reaction was scored as mild or florid.
- Fibrosis stage (NIDDK) was scored for follow-up biopsies

Lei Zhao, M.D., PhD **Univ of Chicago**

Maria Westerhoff, M.D. Rish Pai, M.D., PhD **Univ of Washington**

Cleveland Clinic

Zu-Hao Gao, M.D., PhD **McGill Univ**

Results

- Mean interval between biopsies was 2.5 years (range 1.0-7.5)
- Fibrosis stage progressed in 51%, was stable in 33%, and regressed in 16%.

Histologic Features in Initial Biopsy	Fibrosis Stage in Initial Biopsy		Progression of Fibrosis		
1 7	D		D		
	Ks	P value	Ks	P value	
Steatosis	0.26	0.03	-0.14	0.16	
Lobular inflammation	0.36	0.004	0.11	0.23	
Neutrophils	0.31	0.01	0.01	0.46	
Ballooning	0.44	0.0006	0.004	0.49	
Mallory bodies	0.44	0.0007	-0.05	0.36	
Portal inflammation	0.31	0.01	0.03	0.42	

Results

CL CK7+ elements	Fibrosis stage in initial biopsy		Progression of fibrosis	
& portal DR in initial				
biopsy	Rs	P value	Rs	P value
CLZ single cells	0.13	0.19	-0.11	0.22
CLZ strings	0.54	0.00002	0.01	0.46
CLZ ductules	0.54	0.00003	0.17	0.11
CLZ mild CK7	0.28	0.02	-0.14	0.16
CLZ florid CK7	0.52	0.00004	0.21	0.06
PDR mild	-0.06	0.32	-0.18	0.1
PDR florid	0.31	0.01	-0.08	0.28

Summary

- NAFLD is the most common liver disease in the U.S. and the prevalence is increasing yearly
- Current treatment options for NASH are suboptimal
- Predictors of future fibrosis/prognosis require refinement
- Histologic grading of NASH is currently inadequate in terms of prediction of future fibrosis